稀土永磁材料发展历史及前景

磁性材料的发展

	1950s	1960s	1970s	1980s	1990s	2000s	2010s
	3d	3d	3d-B	3d-N	3d-B		
软磁	Fe Fe-Ni Fe-Co Fe-Si		<u>非晶态</u> Fe-B	Fe16N2	<u>纳米合金</u> Fe _{73.5} Si _{13.5} B ₆ Ni Fe ₈₈ B ₄ Zr ₇ Cu Fe ₄₄ Co ₄₄ B ₄ Zr ₇	<u>复合材料</u> b ₃ Cu ₃ Cu1	
	MO•Fe2O3					·	
				New York			
	3d	3d-4f	3d-4f	3d-4f-B	3d-4f-B/3d 3d-4f-N,C		
硬磁	Steel Alnico MO•6Fe2O3 Pt-Co	SmCo₅	Sm ₂ Co ₁₇ Fe-Cr-Co	Nd₂Fe₁₄B	<u>纳米复合磁体</u> Nd ₂ Fe ₁₄ B/Fe+ Nd ₂ Fe ₁₄ B/α-Fe <u>应用间隙原子</u> Sm ₂ Fe ₁₇ N ₃ Sm ₂ Fe ₁₇ C ₃	<u>复合材料</u> B 2	无稀土永磁

2

第一代 SmCo₅ 磁体的发展过程

- □ R-Co, R-Fe 二元相图的研究
- □ 上世纪四,五十年代稀土金属提纯技术的发展
- □ 1959年,美国贝尔公司的Nesbitt发表 GdCo₂, GdCo₃, GdCo₅ 的研究结果
- □ 1960年,美国的Hubbard在GdCo₅获得大的矫顽力
- □ 1966年,美国空军实验室的Strnat等发表YCo₅极大磁晶各 向异性场的实验结果,并指出RCo₅系列化合物作为永磁材 料的前景
- □ 1967年, Strnat等在SmCo₅中获得5.1 MGOe
- □ 1968年, 荷兰菲利普 Buschow 等获得18 MGOe
- □ 1969-1970, Das, Benz, Martin 等采用液相烧结在全密 度SmCo₅中获得 20 MGOe

第二代 Sm₂Co₁₇ 磁体的发展过程

- □ 上世纪六十年代中, Strnat等研究了一系列R₂Co₁₇化合物 的基本磁性能,包括饱和磁化强度,居里温度,磁晶各向异 性场等
- □ 1970 1973, Ray和Strnat等对R₂(Co_{1-x}Fe_x)₁₇的系统研究. 发现,虽然Sm₂Co₁₇具有较高的磁晶各向异性场(65 k0e)却 很难获得高矫顽力
- □ 1974年,日本的Senno和Tawara在Sm₂Co₁₇中加入Cu,制成析出硬化型合金,获得了4-10 k0e的矫顽力,并制成Sm(Co_{0.85}Fe_{0.05}Cu_{0.10})₈烧结磁体
- □ 1977年,日本的TDK公司在Sm₂(Co,Fe,Cu)₁₇ 中加入Zr,并 在 Sm(Co_{0.674}Fe_{0.213}Cu_{0.100}Zr_{0.013})_{7.43} 烧结磁体中获得了 (BH)_{max} = 30.2 MGOe

第三代Nd-Fe-B磁体的前期工作

- □用储藏量较丰富的Nd或Pr代替Sm,同时用Fe代替Co,制成 Nd-Fe或Pr-Fe磁体,将具有重大意义
- □ 1959年,美国贝尔公司的Nesbitt对Gd-Fe系的研究
- □ 1968年, Strnat 等对R-Fe二元系唯一的化合物 Nd₂Fe₁₇的 研究
 - 低居里温度,接近室温
 - 低磁晶各向异性场(易基面)
- □ 于是人们就思考,虽然 R-Fe 系不存在有希望的稳定化合物,是不是有可能存在有希望的新的亚稳相存在呢?
- □ 借鉴1970年代发展起来的软磁非晶态合金, 如 Fe-B 等的 制作技术
 - 快冷 → 非晶态
 - 非晶态合金热处理 → 亚稳相

Sm-Co 和 Nd-Fe 二元系

- Sm-Co 二元系存在众多化合物, 如 Sm₂Co₁₇, SmCo₅, Sm₂Co₇, SmCo₃, SmCo₂ 等等
- Nd-Fe 二元系只存在一个化合物, Nd₂Fe₁₇。但是它具有低的居里温度(接近室温) 和易基面的磁 晶各向异性, 不具备发展成为永磁材料的基本条件
- 于是人们就思考,虽然 R-Fe 系不存在有希望的稳定化合物,是不是有可能存在有希望的亚稳相存在呢?

第三代 Nd₂Fe₁₄B 磁体的发展过程 1. 在R-Fe二元系中寻找亚稳相

- □ 1973年, Clark 在<mark>溅射</mark>TbFe₂非晶薄膜经500C晶化 退火后获得了3.75 k0e 的矫顽力和8.7 MG0e 的 最大磁能积
- □ 1980年, 美国通用汽车公司的J.Croat 对快淬Fe-Nd, Fe-Pr二元系的研究: 寻求非平衡态 R-Fe 二 元化合物
 - 在Nd_{0.4}Fe_{0.6}和Pr_{0.4}Fe_{0.6}中分别获得了7.5 kOe的矫顽力 和3-4 MGOe 的最大磁能积
 - Croat 认为,这一永磁性能的获得是形成了亚稳微晶相的结果
 - 然而, XRD 的结果并没有证实新的亚稳相的存在

第三代 Nd₂Fe₁₄B 磁体的发展过程 2. 在R-Fe二元系中加入B

- □ 1981年,美国海军实验室的Koon首先在La-Tb-Fe系中加入玻璃化元素B 以利于非晶的形成.
 - 合金成分为: (Fe_{0.82}B_{0.18})_{0.9}Tb_{0.05}La_{0.05}
 - 快淬后经930K退火后获得了接近 10 kOe 的矫顽力
- □ 1983美国 G.Hadjipanyis 在Pr-Fe中加入B和Si,同样是为了在快淬过 程中更容易形成完全的非晶态
 - $Pr_{16}Fe_{76}B_5Si_3$
 - Pr₁₆Fe₇₆B₈
 - $_{\rm M}{\rm H_c}$ = 15 kOe, (BH) $_{\rm max}$ = 13 MGOe
- XRD分析表明, Pr₁₆Fe₇₆B₅Si₃的衍射线条与Stadelmaier 于1981年发现的 R₃Fe₂₀B 四方相极为相似, Pr₁₆Fe₇₆B₈的磁性被归结于四方 R₃Fe₂₀B 稳定 相
- □ 而R₃Fe₂₀B是一个稳定相,并非亚稳相。认识到这一点, Hadjipanayis于 1983年9月在北京的稀土永磁会议中在与我交谈中提到,新的磁体也许可以 用传统的粉末冶金方法制备,而不必使用快淬
- □ 在同一个会议上,金子秀夫宣布,日本住友特殊金属研制成功新的稀土磁体 NdFe₂

第三代 Nd₂Fe₁₄B 磁体的发展过程 3. 烧结及快淬Nd-Fe-B磁体的诞生

 在1983年11月于匹兹堡召开的美国第29次磁学与磁性材料 会议上佐川真人介绍了新磁体的详细技术资料

- 成分: Nd₁₅Fe₇₇B₈
- 性能: 最佳 38 MGOe
- 工艺: 类似 SmCo₅
- □ 在同一个会议上美国通用汽车公司J.Croat 等宣布制成成 快淬Nd₁₅Fe₇₇B₈磁粉
- □ 后来通用汽车公司采用热压/热变形的技术成功制成大块 取向Nd₁₅Fe₇₇B₈磁体,性能与烧结磁体相似
- □ 以后更仔细的研究结果表明主相为 R₂Fe₁₄B,从而一个新的著名的三元化合物诞生了

第一,二代稀土永磁的研发与第三代稀土 永磁的研发过程的重大区别

- □ 第一,二代稀土永磁分别建立在二元Sm-Co系中具有高的 单轴磁晶各向异性的化合物 SmCo₅ 和 Sm₂Co₁₇的基础上
- □ Sm-Co二元相图早已测出。在研究工作之初,就已经发现 这些化合物,并且测试了它们的基本磁性。以后的研究工 作是进行系统的开发工作,使之成为实用磁体
- □ 第三代稀土永磁则是建立在三元化合物 Nd₂Fe₁₄B 的基础 上。然而,往 Nd-Fe中加入 B 并不是为了形成新的三元 化合物,而是为了更容易地获得非晶态,以便在随后的晶 化过程中能够形成所需要的亚稳相
- 不妨说第三代稀土永磁的研发实际上是一个"歪打正着"的过程。加B的目的是为了更容易形成亚稳化合物,结果却是形成了稳定的三元 Nd₂Fe₁₄B。这个过程具有很大的偶然性。

B 的作用

- $\Box \operatorname{Nd}_{2}\operatorname{Fe}_{17} \rightarrow \operatorname{Nd}_{2}\operatorname{Fe}_{14}\operatorname{B}$
 - 六方,易基面 → 四方,易轴(单轴各向异性)
 - H_A , ~ 0 \rightarrow 65 kOe
 - T_C, 室温 → 312°C

□ B 的作用是使晶格扩张,从而改变了基本磁性

□ 由此启发了人们通过利用间隙原子,扩张晶格, 改善材料的磁性

原子间距对磁性的影响 Bethe-Slater 曲线

D/d

D: 原子间距 d: 3d 亚原子层的直径

改变原子间距引起的巨大变化

Sm ₂ Fe ₁₇	\rightarrow	Sm ₂ Fe ₁₇ N ₃
• H _A , 0	\rightarrow	140 kOe
▪ 易基面	\rightarrow	易轴
Nd ₂ Fe ₁₇	\rightarrow	$Md_2Fe_{14}B$
• H _A , 0	\rightarrow	65 kOe
▪ 易基面	\rightarrow	易轴
Mn + Al	\rightarrow	MnAl
• 顺磁性	\rightarrow	铁磁性
Mn + Bi	\rightarrow	MnBi
• 顺磁性	\rightarrow	铁磁性

间隙原子对改变原子间距及磁性能的效果

□ Y ₂ Fe ₁₇	\rightarrow		$\mathbf{Y}_{2}\mathbf{Fe}_{17}\mathbf{N}_{3}$		
а	0.848 nm	\rightarrow	0.865 nm	2.0%	1
С	0.826 nm	\rightarrow	0.844 nm	2.2%	1
Τ _c	94 K	\rightarrow	327 K	112%	1
4 π M _s	6.0 kG	\rightarrow	14.6 kG	143%	1

$\Box Sm_2Fe_{17}$	\rightarrow		Sm ₂ Fe ₁₇ N ₃		
а	0.854 nm	\rightarrow	0.873 nm	2.2%	1
С	1.243 nm	\rightarrow	1.264 nm	1.7%	1
Т _с	389 K	\rightarrow	749 K	93%	1
4 π M _s	10.0 kG	\rightarrow	15.4 kG	54%	1
H _A	0	\rightarrow	140 kOe	∞	$\uparrow \uparrow \uparrow$

纳米复合永磁材料

- □ 在以Nd₂Fe₁₄B 为基的第三代稀土永磁得到发展以 后,人们的注意力转向在 Nd-Fe-B 三元系中寻 求更富含Fe(以求获得更高的磁化强度)的稳定 的或亚稳的新的化合物
- □于是,应用快淬技术制备非晶态合金,然后进行 晶化处理,这一技术路线又重新获得重视
- □ 1988年菲利普研究室在经历了晶化退火的**纳米** Nd₂Fe₁₄B/Fe₃B合金粉末中获得了约3k0e的内禀矫 顽力
- 口这一研究开创了纳米复合稀土永磁材料的发展

早期的纳米复合永磁材料

□ 二十世纪九十年代,纳米永磁复合永磁材料的研制在欧洲,美国,日本,以及中国都受到很大重视. 有人预期(BH)_{max}可达100 MGOe

□制备高性能纳米永磁复合永磁体的技术困难

- 如何把纳米复合永磁合金粉末制成全密度磁体,同时保持所必需的纳米结构
- 如何在纳米复合永磁体中获得所需要的晶粒取向
- □早期纳米复合永磁材料的性能
 - 粉末及极小磁体的性能: 10 23 MGOe (VSM结果)
 - 粘结磁体: ~10 MGOe

稀土磁体发展的总结

Sm-Co

• 基本上是系统研究的结果

□ Nd-Fe-B

- 是系统研究特别是偶然事件结合的结果
- 加B的最初目的是为了抑制晶化,易于获得非晶,从而获得亚稳化合物.并没有意识到有可能获得新的三元稳定化合物
- 加B的结果是形成了新的三元化合物,导致晶格扩张,提高了磁化 强度和居里温度,并使磁晶各向异性从易基面改变为单轴各向异 性
- \Box Nd-Fe-B/Fe₃B (α -Fe)
- □ 经历了从 二元稳定 R-Co 化合物 → 寻求二元亚稳 R-Fe化合物 → 三元稳定 R-Fe-B 化合物 → 寻求更富Fe 的三元稳定或亚稳化合物 R-Fe-B → 三元稳定复合 R-Fe-B/Fe₃B

快淬工艺的意义

快淬/机械合金化 → 非晶合金 → 纳米亚稳相 → 纳米稳定相

稀土永磁材料发展中的思想突破

- □ 1960年代,Strnat认识到不仅仅在YCo₅中,而 且在整个RCo₅系列中都有可能找到具有实用价 值的永磁材料
- □受非晶合金研究的启发,1970年代末,在R-Fe (-B)系中寻找亚稳化合物
- □ 1990年代初对间隙原子作用的研究
- □ 1980年末以来对纳米结构以及界面交换耦合作 用的认识(寻求R-Fe-B系中比R₂Fe₁₄B更富Fe 的稳定或亚稳化合物。由烧结工艺返回快淬工 艺)

稀土永磁五十年

20

未来的高性能稀土永磁

- □ Nd₂Fe₁₄B 是稀土永磁的终结者? 第四代稀土永磁可能在哪里?
- □ R₂Fe₁₄B 不是最后一个高性能永磁材料,而是第一个多元的高性能永磁材料。换句话说,它不是一个美好故事的结尾,而是开头
- □ 新的化合物的可能特点
 - 不大可能是 R-T 两元化合物
 - 很可能是 R-T-M 三元或者更复杂的多元化合物
 - R(4f) 稀土元素: 提供大的各向异性
 - T (3d) 过渡元素: 提供高的磁矩
 - M 其它元素: 扩张晶格, 从而改变 R-R, T-T, 以及 R-T 之间的磁 性耦合
 - 考虑到材料科学的发展现状,三元以及多元相图的匮乏,寻求这种新的 化合物需要很长的摸索时间
 - 偶然因素可能会起重要的作用,如同在Nd-Fe 中加 B 一样
- 应当重视复合材料的研究。复合材料之中各不同组员的相互作用很可能导致新相的形成

稀土磁体的未来发展途径

□ 基于三个 4f-3d 化合物的三代稀土永磁:

 $RCo_5 \rightarrow R_2Co_{17} \rightarrow R_2Fe_{14}B \rightarrow ?$

□ 未来的新的化合物

- 三元或者多元化合物
- 4f-3d-M 化合物
 - 4f: 提供强的磁晶各向异性
 - 3d: 提供高的磁化强度和高的居里温度
 - M: 控制原子间距
- 很可能因偶然事件而发现
- 强调改变原子间距的重要性
- □ 新的工艺手段
 - 低氧工艺
 - 成型工艺

□ 复合材料

永磁材料之研究展望

□ 近 期

- YCo₅, CeCo₅, MMCo₅, Pr₂(Co,Fe)₁₇ ???
- 双相复合磁体之研究
- 4f-3d-M 三元相图的研究
- 新的稀土-过渡金属化合物之研究
- □ 中 期
 - 4f-3d-M 三元相图的研究
 - 通过改变原子间距, 研制新的4f-3d-M化合物
 - 除了六方、四方以外其它非对称晶系的研究

□远期

• 通过控制原子间距,变亚磁性为铁磁性

应用纳米结构改善传统化合物的性能

□ YCo₅

- $4\pi M_s = 10.6 \text{ kG}$
- $T_C = 630 \ ^{\circ}C$
- $H_A = 130 \text{ kOe}$

$\Box Pr_{2}(Co_{0.6}Fe_{0.4})_{17}$

- $4\pi M_s = 15.5 \text{ kG}$
- $T_C = 760 \ ^{\circ}C$
- $H_A = 26 \text{ kOe}$

□ Y₂(Co,Fe)₁₇

高磁能纳米复合 $Nd_2Fe_{14}B/\alpha$ -Fe的理想结构

未来纳米复合磁体的制备过程

with diameter d

当 t = 0.13 d 时, 软硬磁两相的体积相等.

When t = 0.13 d, the hard and soft phases have the same volume

d ~ 10 nm, t ~ 1.3 nm

镀粉

球壳结构的特点

Nd₂Fe₁₄B/α-Fe和Nd₂Fe₁₄B/Fe-Co 的理论最大磁能积

29

达到(BH)_{max} = 100 MGOe 的可能性及其实际意义

- □当 t / D = 0.15, 软磁相的体积就占复合磁体 的55%
- □ 如能制成大块取向磁体,在采用a-Fe作为软磁性 相时,(BH)_{max} 可接近100 MGOe,而在采用Fe-Co作为软磁性相时,(BH)_{max} 可超过100 MGOe
- □ 这将是艰巨的任务,会面临不少技术困难,然而 却非不可能实现
- 问题在于,即使能够实现,其实际意义却是十分有限的。因为它能够挑战现有商用和Nd-Fe-B和Sm-Co磁体的可能性微乎其微,其原因已见上回分解

元素的磁性

3d, 4d元素的原子磁矩

3d	1 2 3 4	21 Sc +	22 Ti + +	23 V + +	24 Cr + + +	25 Mn + + +	26 Fe + - + +	27 Co + - + - +	28 Ni + - + - + -	29 Cu + - + - + - + -	30 Zn + - + - + - + -
	5				+	+	+	+	+	+ -	+ -
		1	2	3	5	5	4	3	2	0	0
				Non-ca	ancelled	spin in 3	d for a si	ngle ator	m		

4d	1 2 3 4 5	39 Y +	40 Zr + +	41 Nb + + +	42 Mo + + + +	43 Tc + - + + +	44 Ru + - + - + +	45 Rh + - + - + - +	46 Pd + - + - + - + - + -	47 Ag + - + - + - + - + -	48 Cd + - + - + - + - + -
		1	2	4	5	4	3	2	0	0	0
				Non-ca	ancelled	spin in 4	d for a s	ingle ato	m		

4f,5d原子磁矩

4f	1 2 3 4 5 6 7	57 La	58 Ce + +	59 Pr + +	60 Nd + + +	61 Pm + + +	62 Sm + + + +	63 Eu + + + + + +	64 Gd + + + + +	65 Tb + - + + + + + + +	66 Dy + - + - + - + + + +	67 Ho + - + - + - + + + +	68 Er + - + - + - + - + - + - +	69 Tm + - + - + - + - + - + - + - + -	70 Yb + - + - + - + - + - + - + - + -
		0	2	3	4 Non-ca	5 ancelled	6 spin in 4	7 f for a si	7 ngle ator	6 n	4	3	2	1	0

曾获得的最高磁性能

□ **Dy** (at **4.2 K**)

- $4\pi M_s = 39 \text{ kG}$
- 如能发展足够高的矫顽力, (BH)_{max} = 380 MGOe

$\Box Dy_3Al_2 \text{ (at 4.2 K)}$

- $B_r = 17 \text{ kG}$
- $_{\rm M}H_{\rm c} = 20$ KOe,
- $(BH)_{max} = 70 \text{ MGOe}$

未来可能的高性能永磁材料

- □亚磁性 → 铁磁性 ??
- □新4f-3d化合物
 - YMn₂, Y₆Mn₂₃, YMn₁₂
 - NdMn₂, Nd₆Mn₂₃, NdMn₁₂
 - DyMn₂, Dy₆Mn₂₃, DyMn₁₂

□ 途径

- 新的三元或多元化合物 R-T-M···
- 间隙原子的应用
- 新技术的应用

- ✓ 新化合物
- ✓ 置换原子
- ✓ 间隙原子
- ✓ 其它途径

微米材料 → 纳米材料 → "埃米材料"

Atomic Percent Dysprosium

Dy

40

永磁材料的未来发展

□ 高磁能永磁材料

- 以4f-3d为基的三元或多元化合物
- 3d-4f-M 三元相图的研究,多元相图的研究
- 通过控制原子间距获得高性能
- 如能把4f重稀土原子的磁矩与3d原子的磁矩从反平行改变为平行, 就有可能获得极高磁能(> 100 MG0e)
- □ 无钴无稀土廉价永磁材料
- □ 其他永磁材料
 - 建立在其他高非对称晶系的材料,如单斜,三斜,正交晶系等
 - 碳化物,磷化物,硼化物,氮化物等

复合材料

□应当重视复合磁体的研究

□除硬/软复合磁体之外的其它复合磁体

- 硬/硬复合磁体
 - 例如 Pr₂Fe₁₄B/PCo₅
- 多元复合磁体
 - •例如 Pr₂Fe₁₄B/PCo₅/HRCo₅/HR₂Co₁₇

□多种组员之间的相互作用

□发现新的化合物的重要途径